Assignment4: TSPL Assignment 4
module Assignment4 where
YOUR NAME AND EMAIL GOES HERE
Introduction
You must do all the exercises labelled “(recommended)”.
Exercises labelled “(stretch)” are there to provide an extra challenge. You don’t need to do all of these, but should attempt at least a few.
Exercises labelled “(practice)” are included for those who want extra practice.
Submit your homework using Gradescope. Go to the course page under Learn. Select “Assessment”, then select “Assignment Submission”. Please ensure your files execute correctly under Agda!
IMPORTANT For ease of marking, when modifying the given code please write
-- begin
-- end
before and after code you add, to indicate your changes. Full credit may not be awarded if you fail to mark changes clearly.
Good Scholarly Practice.
Please remember the University requirement as regards all assessed work. Details about this can be found at:
https://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
Furthermore, you are required to take reasonable measures to protect your assessed work from unauthorised access. For example, if you put any such work on a public repository then you must set access permissions appropriately (generally permitting access only to yourself, or your group in the case of group practicals).
More
module More where
Imports
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat using (ℕ; zero; suc; _*_; _<_; _≤?_; z≤n; s≤s) open import Relation.Nullary using (¬_) open import Relation.Nullary.Decidable using (True; toWitness)
Syntax
infix 4 _⊢_ infix 4 _∋_ infixl 5 _,_ infixr 7 _⇒_ infixr 9 _`×_ infix 5 ƛ_ infix 5 μ_ infixl 7 _·_ infixl 8 _`*_ infix 8 `suc_ infix 9 `_ infix 9 S_ infix 9 #_
Types
data Type : Set where `ℕ : Type _⇒_ : Type → Type → Type Nat : Type _`×_ : Type → Type → Type
Contexts
data Context : Set where ∅ : Context _,_ : Context → Type → Context
Variables and the lookup judgment
data _∋_ : Context → Type → Set where Z : ∀ {Γ A} --------- → Γ , A ∋ A S_ : ∀ {Γ A B} → Γ ∋ B --------- → Γ , A ∋ B
Terms and the typing judgment
data _⊢_ : Context → Type → Set where -- variables `_ : ∀ {Γ A} → Γ ∋ A ----- → Γ ⊢ A -- functions ƛ_ : ∀ {Γ A B} → Γ , A ⊢ B --------- → Γ ⊢ A ⇒ B _·_ : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A --------- → Γ ⊢ B -- naturals `zero : ∀ {Γ} ------ → Γ ⊢ `ℕ `suc_ : ∀ {Γ} → Γ ⊢ `ℕ ------ → Γ ⊢ `ℕ case : ∀ {Γ A} → Γ ⊢ `ℕ → Γ ⊢ A → Γ , `ℕ ⊢ A ----- → Γ ⊢ A -- fixpoint μ_ : ∀ {Γ A} → Γ , A ⊢ A ---------- → Γ ⊢ A -- primitive numbers con : ∀ {Γ} → ℕ ------- → Γ ⊢ Nat _`*_ : ∀ {Γ} → Γ ⊢ Nat → Γ ⊢ Nat ------- → Γ ⊢ Nat -- let `let : ∀ {Γ A B} → Γ ⊢ A → Γ , A ⊢ B ---------- → Γ ⊢ B -- products `⟨_,_⟩ : ∀ {Γ A B} → Γ ⊢ A → Γ ⊢ B ----------- → Γ ⊢ A `× B `proj₁ : ∀ {Γ A B} → Γ ⊢ A `× B ----------- → Γ ⊢ A `proj₂ : ∀ {Γ A B} → Γ ⊢ A `× B ----------- → Γ ⊢ B -- alternative formulation of products case× : ∀ {Γ A B C} → Γ ⊢ A `× B → Γ , A , B ⊢ C -------------- → Γ ⊢ C
Abbreviating de Bruijn indices
length : Context → ℕ length ∅ = zero length (Γ , _) = suc (length Γ) lookup : {Γ : Context} → {n : ℕ} → (p : n < length Γ) → Type lookup {(_ , A)} {zero} (s≤s z≤n) = A lookup {(Γ , _)} {(suc n)} (s≤s p) = lookup p count : ∀ {Γ} → {n : ℕ} → (p : n < length Γ) → Γ ∋ lookup p count {_ , _} {zero} (s≤s z≤n) = Z count {Γ , _} {(suc n)} (s≤s p) = S (count p) #_ : ∀ {Γ} → (n : ℕ) → {n∈Γ : True (suc n ≤? length Γ)} -------------------------------- → Γ ⊢ lookup (toWitness n∈Γ) #_ n {n∈Γ} = ` count (toWitness n∈Γ)
Renaming
ext : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) --------------------------------- → (∀ {A B} → Γ , A ∋ B → Δ , A ∋ B) ext ρ Z = Z ext ρ (S x) = S (ρ x) rename : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ∋ A) ----------------------- → (∀ {A} → Γ ⊢ A → Δ ⊢ A) rename ρ (` x) = ` (ρ x) rename ρ (ƛ N) = ƛ (rename (ext ρ) N) rename ρ (L · M) = (rename ρ L) · (rename ρ M) rename ρ (`zero) = `zero rename ρ (`suc M) = `suc (rename ρ M) rename ρ (case L M N) = case (rename ρ L) (rename ρ M) (rename (ext ρ) N) rename ρ (μ N) = μ (rename (ext ρ) N) rename ρ (con n) = con n rename ρ (M `* N) = rename ρ M `* rename ρ N rename ρ (`let M N) = `let (rename ρ M) (rename (ext ρ) N) rename ρ `⟨ M , N ⟩ = `⟨ rename ρ M , rename ρ N ⟩ rename ρ (`proj₁ L) = `proj₁ (rename ρ L) rename ρ (`proj₂ L) = `proj₂ (rename ρ L) rename ρ (case× L M) = case× (rename ρ L) (rename (ext (ext ρ)) M)
Simultaneous Substitution
exts : ∀ {Γ Δ} → (∀ {A} → Γ ∋ A → Δ ⊢ A) → (∀ {A B} → Γ , A ∋ B → Δ , A ⊢ B) exts σ Z = ` Z exts σ (S x) = rename S_ (σ x) subst : ∀ {Γ Δ} → (∀ {C} → Γ ∋ C → Δ ⊢ C) → (∀ {C} → Γ ⊢ C → Δ ⊢ C) subst σ (` k) = σ k subst σ (ƛ N) = ƛ (subst (exts σ) N) subst σ (L · M) = (subst σ L) · (subst σ M) subst σ (`zero) = `zero subst σ (`suc M) = `suc (subst σ M) subst σ (case L M N) = case (subst σ L) (subst σ M) (subst (exts σ) N) subst σ (μ N) = μ (subst (exts σ) N) subst σ (con n) = con n subst σ (M `* N) = subst σ M `* subst σ N subst σ (`let M N) = `let (subst σ M) (subst (exts σ) N) subst σ `⟨ M , N ⟩ = `⟨ subst σ M , subst σ N ⟩ subst σ (`proj₁ L) = `proj₁ (subst σ L) subst σ (`proj₂ L) = `proj₂ (subst σ L) subst σ (case× L M) = case× (subst σ L) (subst (exts (exts σ)) M)
Single and double substitution
_[_] : ∀ {Γ A B} → Γ , B ⊢ A → Γ ⊢ B --------- → Γ ⊢ A _[_] {Γ} {A} {B} N M = subst {Γ , B} {Γ} σ {A} N where σ : ∀ {A} → Γ , B ∋ A → Γ ⊢ A σ Z = M σ (S x) = ` x _[_][_] : ∀ {Γ A B C} → Γ , A , B ⊢ C → Γ ⊢ A → Γ ⊢ B ------------- → Γ ⊢ C _[_][_] {Γ} {A} {B} N V W = subst {Γ , A , B} {Γ} σ N where σ : ∀ {C} → Γ , A , B ∋ C → Γ ⊢ C σ Z = W σ (S Z) = V σ (S (S x)) = ` x
Values
data Value : ∀ {Γ A} → Γ ⊢ A → Set where -- functions V-ƛ : ∀ {Γ A B} {N : Γ , A ⊢ B} --------------------------- → Value (ƛ N) -- naturals V-zero : ∀ {Γ} ----------------- → Value (`zero {Γ}) V-suc_ : ∀ {Γ} {V : Γ ⊢ `ℕ} → Value V -------------- → Value (`suc V) -- primitives V-con : ∀ {Γ n} ----------------- → Value (con {Γ} n) -- products V-⟨_,_⟩ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------- → Value `⟨ V , W ⟩
Implicit arguments need to be supplied when they are not fixed by the given arguments.
Reduction
infix 2 _—→_ data _—→_ : ∀ {Γ A} → (Γ ⊢ A) → (Γ ⊢ A) → Set where -- functions ξ-·₁ : ∀ {Γ A B} {L L′ : Γ ⊢ A ⇒ B} {M : Γ ⊢ A} → L —→ L′ --------------- → L · M —→ L′ · M ξ-·₂ : ∀ {Γ A B} {V : Γ ⊢ A ⇒ B} {M M′ : Γ ⊢ A} → Value V → M —→ M′ --------------- → V · M —→ V · M′ β-ƛ : ∀ {Γ A B} {N : Γ , A ⊢ B} {V : Γ ⊢ A} → Value V -------------------- → (ƛ N) · V —→ N [ V ] -- naturals ξ-suc : ∀ {Γ} {M M′ : Γ ⊢ `ℕ} → M —→ M′ ----------------- → `suc M —→ `suc M′ ξ-case : ∀ {Γ A} {L L′ : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} → L —→ L′ ------------------------- → case L M N —→ case L′ M N β-zero : ∀ {Γ A} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} ------------------- → case `zero M N —→ M β-suc : ∀ {Γ A} {V : Γ ⊢ `ℕ} {M : Γ ⊢ A} {N : Γ , `ℕ ⊢ A} → Value V ---------------------------- → case (`suc V) M N —→ N [ V ] -- fixpoint β-μ : ∀ {Γ A} {N : Γ , A ⊢ A} ---------------- → μ N —→ N [ μ N ] -- primitive numbers ξ-*₁ : ∀ {Γ} {L L′ M : Γ ⊢ Nat} → L —→ L′ ----------------- → L `* M —→ L′ `* M ξ-*₂ : ∀ {Γ} {V M M′ : Γ ⊢ Nat} → Value V → M —→ M′ ----------------- → V `* M —→ V `* M′ δ-* : ∀ {Γ c d} --------------------------------- → con {Γ} c `* con d —→ con (c * d) -- let ξ-let : ∀ {Γ A B} {M M′ : Γ ⊢ A} {N : Γ , A ⊢ B} → M —→ M′ --------------------- → `let M N —→ `let M′ N β-let : ∀ {Γ A B} {V : Γ ⊢ A} {N : Γ , A ⊢ B} → Value V ------------------- → `let V N —→ N [ V ] -- products ξ-⟨,⟩₁ : ∀ {Γ A B} {M M′ : Γ ⊢ A} {N : Γ ⊢ B} → M —→ M′ ------------------------- → `⟨ M , N ⟩ —→ `⟨ M′ , N ⟩ ξ-⟨,⟩₂ : ∀ {Γ A B} {V : Γ ⊢ A} {N N′ : Γ ⊢ B} → Value V → N —→ N′ ------------------------- → `⟨ V , N ⟩ —→ `⟨ V , N′ ⟩ ξ-proj₁ : ∀ {Γ A B} {L L′ : Γ ⊢ A `× B} → L —→ L′ --------------------- → `proj₁ L —→ `proj₁ L′ ξ-proj₂ : ∀ {Γ A B} {L L′ : Γ ⊢ A `× B} → L —→ L′ --------------------- → `proj₂ L —→ `proj₂ L′ β-proj₁ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------------- → `proj₁ `⟨ V , W ⟩ —→ V β-proj₂ : ∀ {Γ A B} {V : Γ ⊢ A} {W : Γ ⊢ B} → Value V → Value W ---------------------- → `proj₂ `⟨ V , W ⟩ —→ W -- alternative formulation of products ξ-case× : ∀ {Γ A B C} {L L′ : Γ ⊢ A `× B} {M : Γ , A , B ⊢ C} → L —→ L′ ----------------------- → case× L M —→ case× L′ M β-case× : ∀ {Γ A B C} {V : Γ ⊢ A} {W : Γ ⊢ B} {M : Γ , A , B ⊢ C} → Value V → Value W ---------------------------------- → case× `⟨ V , W ⟩ M —→ M [ V ][ W ]
Reflexive and transitive closure
infix 2 _—↠_ infix 1 begin_ infixr 2 _—→⟨_⟩_ infix 3 _∎ data _—↠_ {Γ A} : (Γ ⊢ A) → (Γ ⊢ A) → Set where _∎ : (M : Γ ⊢ A) ------ → M —↠ M step—→ : (L : Γ ⊢ A) {M N : Γ ⊢ A} → M —↠ N → L —→ M ------ → L —↠ N pattern _—→⟨_⟩_ L L—→M M—↠N = step—→ L M—↠N L—→M begin_ : ∀ {Γ A} {M N : Γ ⊢ A} → M —↠ N ------ → M —↠ N begin M—↠N = M—↠N
Progress
data Progress {A} (M : ∅ ⊢ A) : Set where step : ∀ {N : ∅ ⊢ A} → M —→ N ---------- → Progress M done : Value M ---------- → Progress M progress : ∀ {A} → (M : ∅ ⊢ A) ----------- → Progress M progress (` ()) progress (ƛ N) = done V-ƛ progress (L · M) with progress L ... | step L—→L′ = step (ξ-·₁ L—→L′) ... | done V-ƛ with progress M ... | step M—→M′ = step (ξ-·₂ V-ƛ M—→M′) ... | done VM = step (β-ƛ VM) progress (`zero) = done V-zero progress (`suc M) with progress M ... | step M—→M′ = step (ξ-suc M—→M′) ... | done VM = done (V-suc VM) progress (case L M N) with progress L ... | step L—→L′ = step (ξ-case L—→L′) ... | done V-zero = step β-zero ... | done (V-suc VL) = step (β-suc VL) progress (μ N) = step β-μ progress (con n) = done V-con progress (L `* M) with progress L ... | step L—→L′ = step (ξ-*₁ L—→L′) ... | done V-con with progress M ... | step M—→M′ = step (ξ-*₂ V-con M—→M′) ... | done V-con = step δ-* progress (`let M N) with progress M ... | step M—→M′ = step (ξ-let M—→M′) ... | done VM = step (β-let VM) progress `⟨ M , N ⟩ with progress M ... | step M—→M′ = step (ξ-⟨,⟩₁ M—→M′) ... | done VM with progress N ... | step N—→N′ = step (ξ-⟨,⟩₂ VM N—→N′) ... | done VN = done (V-⟨ VM , VN ⟩) progress (`proj₁ L) with progress L ... | step L—→L′ = step (ξ-proj₁ L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-proj₁ VM VN) progress (`proj₂ L) with progress L ... | step L—→L′ = step (ξ-proj₂ L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-proj₂ VM VN) progress (case× L M) with progress L ... | step L—→L′ = step (ξ-case× L—→L′) ... | done (V-⟨ VM , VN ⟩) = step (β-case× VM VN)
Evaluation
record Gas : Set where constructor gas field amount : ℕ data Finished {Γ A} (N : Γ ⊢ A) : Set where done : Value N ---------- → Finished N out-of-gas : ---------- Finished N data Steps {A} : ∅ ⊢ A → Set where steps : {L N : ∅ ⊢ A} → L —↠ N → Finished N ---------- → Steps L eval : ∀ {A} → Gas → (L : ∅ ⊢ A) ----------- → Steps L eval (gas zero) L = steps (L ∎) out-of-gas eval (gas (suc m)) L with progress L ... | done VL = steps (L ∎) (done VL) ... | step {M} L—→M with eval (gas m) M ... | steps M—↠N fin = steps (L —→⟨ L—→M ⟩ M—↠N) fin
Examples
cube : ∅ ⊢ Nat ⇒ Nat cube = ƛ (# 0 `* # 0 `* # 0) _ : cube · con 2 —↠ con 8 _ = begin cube · con 2 —→⟨ β-ƛ V-con ⟩ con 2 `* con 2 `* con 2 —→⟨ ξ-*₁ δ-* ⟩ con 4 `* con 2 —→⟨ δ-* ⟩ con 8 ∎ exp10 : ∅ ⊢ Nat ⇒ Nat exp10 = ƛ (`let (# 0 `* # 0) (`let (# 0 `* # 0) (`let (# 0 `* # 2) (# 0 `* # 0)))) _ : exp10 · con 2 —↠ con 1024 _ = begin exp10 · con 2 —→⟨ β-ƛ V-con ⟩ `let (con 2 `* con 2) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0))) —→⟨ ξ-let δ-* ⟩ `let (con 4) (`let (# 0 `* # 0) (`let (# 0 `* con 2) (# 0 `* # 0))) —→⟨ β-let V-con ⟩ `let (con 4 `* con 4) (`let (# 0 `* con 2) (# 0 `* # 0)) —→⟨ ξ-let δ-* ⟩ `let (con 16) (`let (# 0 `* con 2) (# 0 `* # 0)) —→⟨ β-let V-con ⟩ `let (con 16 `* con 2) (# 0 `* # 0) —→⟨ ξ-let δ-* ⟩ `let (con 32) (# 0 `* # 0) —→⟨ β-let V-con ⟩ con 32 `* con 32 —→⟨ δ-* ⟩ con 1024 ∎ swap× : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A swap× = ƛ `⟨ `proj₂ (# 0) , `proj₁ (# 0) ⟩ _ : swap× · `⟨ con 42 , `zero ⟩ —↠ `⟨ `zero , con 42 ⟩ _ = begin swap× · `⟨ con 42 , `zero ⟩ —→⟨ β-ƛ V-⟨ V-con , V-zero ⟩ ⟩ `⟨ `proj₂ `⟨ con 42 , `zero ⟩ , `proj₁ `⟨ con 42 , `zero ⟩ ⟩ —→⟨ ξ-⟨,⟩₁ (β-proj₂ V-con V-zero) ⟩ `⟨ `zero , `proj₁ `⟨ con 42 , `zero ⟩ ⟩ —→⟨ ξ-⟨,⟩₂ V-zero (β-proj₁ V-con V-zero) ⟩ `⟨ `zero , con 42 ⟩ ∎ swap×-case : ∀ {A B} → ∅ ⊢ A `× B ⇒ B `× A swap×-case = ƛ case× (# 0) `⟨ # 0 , # 1 ⟩ _ : swap×-case · `⟨ con 42 , `zero ⟩ —↠ `⟨ `zero , con 42 ⟩ _ = begin swap×-case · `⟨ con 42 , `zero ⟩ —→⟨ β-ƛ V-⟨ V-con , V-zero ⟩ ⟩ case× `⟨ con 42 , `zero ⟩ `⟨ # 0 , # 1 ⟩ —→⟨ β-case× V-con V-zero ⟩ `⟨ `zero , con 42 ⟩ ∎
Exercise More
(recommended and practice)
Formalise the remaining constructs defined in this chapter. Make your changes in this file. Evaluate each example, applied to data as needed, to confirm it returns the expected answer:
- sums (recommended)
- unit type (practice)
- an alternative formulation of unit type (practice)
- empty type (recommended)
- lists (practice)
Please delimit any code you add as follows:
-- begin
-- end
Bisimulation
(No recommended exercises for this chapter.)
Exercise ~val⁻¹
(practice)
Show that this also holds in the reverse direction: if M ~ M†
and Value M†
then Value M
.
-- Your code goes here
Exercise sim⁻¹
(practice)
Show that we also have a simulation in the other direction, and hence that we have a bisimulation.
Exercise products
(practice)
Show that the two formulations of products in Chapter [More][plfa.More] are in bisimulation. The only constructs you need to include are variables, and those connected to functions and products. In this case, the simulation is not lock-step.
Inference
module Inference where
Imports
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong; cong₂; _≢_) open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat using (ℕ; zero; suc; _+_; _*_) open import Data.String using (String; _≟_) open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary.Decidable using (False; toWitnessFalse) import plfa.part2.More as DB
Syntax
infix 4 _∋_⦂_ infix 4 _⊢_↑_ infix 4 _⊢_↓_ infixl 5 _,_⦂_ infixr 7 _⇒_ infix 5 ƛ_⇒_ infix 5 μ_⇒_ infix 6 _↑ infix 6 _↓_ infixl 7 _·_ infix 8 `suc_ infix 9 `_Identifiers, types, and contexts are as before:
Id : Set Id = String data Type : Set where `ℕ : Type _⇒_ : Type → Type → Type data Context : Set where ∅ : Context _,_⦂_ : Context → Id → Type → ContextThe syntax of terms is defined by mutual recursion.
data Term⁺ : Set data Term⁻ : Set data Term⁺ where `_ : Id → Term⁺ _·_ : Term⁺ → Term⁻ → Term⁺ _↓_ : Term⁻ → Type → Term⁺ data Term⁻ where ƛ_⇒_ : Id → Term⁻ → Term⁻ `zero : Term⁻ `suc_ : Term⁻ → Term⁻ `case_[zero⇒_|suc_⇒_] : Term⁺ → Term⁻ → Id → Term⁻ → Term⁻ μ_⇒_ : Id → Term⁻ → Term⁻ _↑ : Term⁺ → Term⁻
Example terms
two : Term⁻ two = `suc (`suc `zero) plus : Term⁺ plus = (μ "p" ⇒ ƛ "m" ⇒ ƛ "n" ⇒ `case (` "m") [zero⇒ ` "n" ↑ |suc "m" ⇒ `suc (` "p" · (` "m" ↑) · (` "n" ↑) ↑) ]) ↓ (`ℕ ⇒ `ℕ ⇒ `ℕ) 2+2 : Term⁺ 2+2 = plus · two · two Ch : Type Ch = (`ℕ ⇒ `ℕ) ⇒ `ℕ ⇒ `ℕ twoᶜ : Term⁻ twoᶜ = (ƛ "s" ⇒ ƛ "z" ⇒ ` "s" · (` "s" · (` "z" ↑) ↑) ↑) plusᶜ : Term⁺ plusᶜ = (ƛ "m" ⇒ ƛ "n" ⇒ ƛ "s" ⇒ ƛ "z" ⇒ ` "m" · (` "s" ↑) · (` "n" · (` "s" ↑) · (` "z" ↑) ↑) ↑) ↓ (Ch ⇒ Ch ⇒ Ch) sucᶜ : Term⁻ sucᶜ = ƛ "x" ⇒ `suc (` "x" ↑) 2+2ᶜ : Term⁺ 2+2ᶜ = plusᶜ · twoᶜ · twoᶜ · sucᶜ · `zero
Bidirectional type checking
The typing rules for variables:data _∋_⦂_ : Context → Id → Type → Set where Z : ∀ {Γ x A} ----------------- → Γ , x ⦂ A ∋ x ⦂ A S : ∀ {Γ x y A B} → x ≢ y → Γ ∋ x ⦂ A ----------------- → Γ , y ⦂ B ∋ x ⦂ AThe judgments for synthesizing and inheriting types are mutually recursive:
data _⊢_↑_ : Context → Term⁺ → Type → Set data _⊢_↓_ : Context → Term⁻ → Type → Set data _⊢_↑_ where ⊢` : ∀ {Γ A x} → Γ ∋ x ⦂ A ----------- → Γ ⊢ ` x ↑ A _·_ : ∀ {Γ L M A B} → Γ ⊢ L ↑ A ⇒ B → Γ ⊢ M ↓ A ------------- → Γ ⊢ L · M ↑ B ⊢↓ : ∀ {Γ M A} → Γ ⊢ M ↓ A --------------- → Γ ⊢ (M ↓ A) ↑ A data _⊢_↓_ where ⊢ƛ : ∀ {Γ x N A B} → Γ , x ⦂ A ⊢ N ↓ B ------------------- → Γ ⊢ ƛ x ⇒ N ↓ A ⇒ B ⊢zero : ∀ {Γ} -------------- → Γ ⊢ `zero ↓ `ℕ ⊢suc : ∀ {Γ M} → Γ ⊢ M ↓ `ℕ --------------- → Γ ⊢ `suc M ↓ `ℕ ⊢case : ∀ {Γ L M x N A} → Γ ⊢ L ↑ `ℕ → Γ ⊢ M ↓ A → Γ , x ⦂ `ℕ ⊢ N ↓ A ------------------------------------- → Γ ⊢ `case L [zero⇒ M |suc x ⇒ N ] ↓ A ⊢μ : ∀ {Γ x N A} → Γ , x ⦂ A ⊢ N ↓ A ----------------- → Γ ⊢ μ x ⇒ N ↓ A ⊢↑ : ∀ {Γ M A B} → Γ ⊢ M ↑ A → A ≡ B ------------- → Γ ⊢ (M ↑) ↓ B
Exercise bidirectional-mul
(recommended)
Rewrite your definition of multiplication from Chapter Lambda, decorated to support inference.
-- Your code goes here
Exercise bidirectional-products
(recommended)
Extend the bidirectional type rules to include products from Chapter More. Please delimit any code you add as follows:
-- begin
-- end
Exercise bidirectional-rest
(stretch)
Extend the bidirectional type rules to include the rest of the constructs from Chapter More. Please delimit any code you add as follows:
-- begin
-- end
Prerequisites
Type equality._≟Tp_ : (A B : Type) → Dec (A ≡ B) `ℕ ≟Tp `ℕ = yes refl `ℕ ≟Tp (A ⇒ B) = no λ() (A ⇒ B) ≟Tp `ℕ = no λ() (A ⇒ B) ≟Tp (A′ ⇒ B′) with A ≟Tp A′ | B ≟Tp B′ ... | no A≢ | _ = no λ{refl → A≢ refl} ... | yes _ | no B≢ = no λ{refl → B≢ refl} ... | yes refl | yes refl = yes reflThe domain and range of equal function types are equal:
dom≡ : ∀ {A A′ B B′} → A ⇒ B ≡ A′ ⇒ B′ → A ≡ A′ dom≡ refl = refl rng≡ : ∀ {A A′ B B′} → A ⇒ B ≡ A′ ⇒ B′ → B ≡ B′ rng≡ refl = reflThe types
`ℕ
and A ⇒ B
are not equal:ℕ≢⇒ : ∀ {A B} → `ℕ ≢ A ⇒ B ℕ≢⇒ ()
Unique types
Looking up a type in the context is unique.uniq-∋ : ∀ {Γ x A B} → Γ ∋ x ⦂ A → Γ ∋ x ⦂ B → A ≡ B uniq-∋ Z Z = refl uniq-∋ Z (S x≢y _) = ⊥-elim (x≢y refl) uniq-∋ (S x≢y _) Z = ⊥-elim (x≢y refl) uniq-∋ (S _ ∋x) (S _ ∋x′) = uniq-∋ ∋x ∋x′Synthesizing a type is also unique.
uniq-↑ : ∀ {Γ M A B} → Γ ⊢ M ↑ A → Γ ⊢ M ↑ B → A ≡ B uniq-↑ (⊢` ∋x) (⊢` ∋x′) = uniq-∋ ∋x ∋x′ uniq-↑ (⊢L · ⊢M) (⊢L′ · ⊢M′) = rng≡ (uniq-↑ ⊢L ⊢L′) uniq-↑ (⊢↓ ⊢M) (⊢↓ ⊢M′) = refl
Lookup type of a variable in the context
ext∋ : ∀ {Γ B x y} → x ≢ y → ¬ (∃[ A ] Γ ∋ x ⦂ A) ---------------------------- → ¬ (∃[ A ] Γ , y ⦂ B ∋ x ⦂ A) ext∋ x≢y _ ⟨ A , Z ⟩ = x≢y refl ext∋ _ ¬∃ ⟨ A , S _ ∋x ⟩ = ¬∃ ⟨ A , ∋x ⟩
lookup : ∀ (Γ : Context) (x : Id) ------------------------ → Dec (∃[ A ] Γ ∋ x ⦂ A) lookup ∅ x = no (λ ()) lookup (Γ , y ⦂ B) x with x ≟ y ... | yes refl = yes ⟨ B , Z ⟩ ... | no x≢y with lookup Γ x ... | no ¬∃ = no (ext∋ x≢y ¬∃) ... | yes ⟨ A , ∋x ⟩ = yes ⟨ A , S x≢y ∋x ⟩
Promoting negations
¬arg : ∀ {Γ A B L M} → Γ ⊢ L ↑ A ⇒ B → ¬ Γ ⊢ M ↓ A -------------------------- → ¬ (∃[ B′ ] Γ ⊢ L · M ↑ B′) ¬arg ⊢L ¬⊢M ⟨ B′ , ⊢L′ · ⊢M′ ⟩ rewrite dom≡ (uniq-↑ ⊢L ⊢L′) = ¬⊢M ⊢M′
¬switch : ∀ {Γ M A B} → Γ ⊢ M ↑ A → A ≢ B --------------- → ¬ Γ ⊢ (M ↑) ↓ B ¬switch ⊢M A≢B (⊢↑ ⊢M′ A′≡B) rewrite uniq-↑ ⊢M ⊢M′ = A≢B A′≡B
Synthesize and inherit types
synthesize : ∀ (Γ : Context) (M : Term⁺) --------------------------- → Dec (∃[ A ] Γ ⊢ M ↑ A ) inherit : ∀ (Γ : Context) (M : Term⁻) (A : Type) --------------- → Dec (Γ ⊢ M ↓ A)Synthesis.
synthesize Γ (` x) with lookup Γ x ... | no ¬∃ = no (λ{ ⟨ A , ⊢` ∋x ⟩ → ¬∃ ⟨ A , ∋x ⟩ }) ... | yes ⟨ A , ∋x ⟩ = yes ⟨ A , ⊢` ∋x ⟩ synthesize Γ (L · M) with synthesize Γ L ... | no ¬∃ = no (λ{ ⟨ _ , ⊢L · _ ⟩ → ¬∃ ⟨ _ , ⊢L ⟩ }) ... | yes ⟨ `ℕ , ⊢L ⟩ = no (λ{ ⟨ _ , ⊢L′ · _ ⟩ → ℕ≢⇒ (uniq-↑ ⊢L ⊢L′) }) ... | yes ⟨ A ⇒ B , ⊢L ⟩ with inherit Γ M A ... | no ¬⊢M = no (¬arg ⊢L ¬⊢M) ... | yes ⊢M = yes ⟨ B , ⊢L · ⊢M ⟩ synthesize Γ (M ↓ A) with inherit Γ M A ... | no ¬⊢M = no (λ{ ⟨ _ , ⊢↓ ⊢M ⟩ → ¬⊢M ⊢M }) ... | yes ⊢M = yes ⟨ A , ⊢↓ ⊢M ⟩Inheritance:
inherit Γ (ƛ x ⇒ N) `ℕ = no (λ()) inherit Γ (ƛ x ⇒ N) (A ⇒ B) with inherit (Γ , x ⦂ A) N B ... | no ¬⊢N = no (λ{ (⊢ƛ ⊢N) → ¬⊢N ⊢N }) ... | yes ⊢N = yes (⊢ƛ ⊢N) inherit Γ `zero `ℕ = yes ⊢zero inherit Γ `zero (A ⇒ B) = no (λ()) inherit Γ (`suc M) `ℕ with inherit Γ M `ℕ ... | no ¬⊢M = no (λ{ (⊢suc ⊢M) → ¬⊢M ⊢M }) ... | yes ⊢M = yes (⊢suc ⊢M) inherit Γ (`suc M) (A ⇒ B) = no (λ()) inherit Γ (`case L [zero⇒ M |suc x ⇒ N ]) A with synthesize Γ L ... | no ¬∃ = no (λ{ (⊢case ⊢L _ _) → ¬∃ ⟨ `ℕ , ⊢L ⟩}) ... | yes ⟨ _ ⇒ _ , ⊢L ⟩ = no (λ{ (⊢case ⊢L′ _ _) → ℕ≢⇒ (uniq-↑ ⊢L′ ⊢L) }) ... | yes ⟨ `ℕ , ⊢L ⟩ with inherit Γ M A ... | no ¬⊢M = no (λ{ (⊢case _ ⊢M _) → ¬⊢M ⊢M }) ... | yes ⊢M with inherit (Γ , x ⦂ `ℕ) N A ... | no ¬⊢N = no (λ{ (⊢case _ _ ⊢N) → ¬⊢N ⊢N }) ... | yes ⊢N = yes (⊢case ⊢L ⊢M ⊢N) inherit Γ (μ x ⇒ N) A with inherit (Γ , x ⦂ A) N A ... | no ¬⊢N = no (λ{ (⊢μ ⊢N) → ¬⊢N ⊢N }) ... | yes ⊢N = yes (⊢μ ⊢N) inherit Γ (M ↑) B with synthesize Γ M ... | no ¬∃ = no (λ{ (⊢↑ ⊢M _) → ¬∃ ⟨ _ , ⊢M ⟩ }) ... | yes ⟨ A , ⊢M ⟩ with A ≟Tp B ... | no A≢B = no (¬switch ⊢M A≢B) ... | yes A≡B = yes (⊢↑ ⊢M A≡B)
Testing the example terms
S′ : ∀ {Γ x y A B} → {x≢y : False (x ≟ y)} → Γ ∋ x ⦂ A ------------------ → Γ , y ⦂ B ∋ x ⦂ A S′ {x≢y = x≢y} x = S (toWitnessFalse x≢y) xTyping two plus two on naturals:
⊢2+2 : ∅ ⊢ 2+2 ↑ `ℕ ⊢2+2 = (⊢↓ (⊢μ (⊢ƛ (⊢ƛ (⊢case (⊢` (S′ Z)) (⊢↑ (⊢` Z) refl) (⊢suc (⊢↑ (⊢` (S′ (S′ (S′ Z))) · ⊢↑ (⊢` Z) refl · ⊢↑ (⊢` (S′ Z)) refl) refl)))))) · ⊢suc (⊢suc ⊢zero) · ⊢suc (⊢suc ⊢zero)) _ : synthesize ∅ 2+2 ≡ yes ⟨ `ℕ , ⊢2+2 ⟩ _ = reflTyping two plus two with Church numerals:
⊢2+2ᶜ : ∅ ⊢ 2+2ᶜ ↑ `ℕ ⊢2+2ᶜ = ⊢↓ (⊢ƛ (⊢ƛ (⊢ƛ (⊢ƛ (⊢↑ (⊢` (S′ (S′ (S′ Z))) · ⊢↑ (⊢` (S′ Z)) refl · ⊢↑ (⊢` (S′ (S′ Z)) · ⊢↑ (⊢` (S′ Z)) refl · ⊢↑ (⊢` Z) refl) refl) refl))))) · ⊢ƛ (⊢ƛ (⊢↑ (⊢` (S′ Z) · ⊢↑ (⊢` (S′ Z) · ⊢↑ (⊢` Z) refl) refl) refl)) · ⊢ƛ (⊢ƛ (⊢↑ (⊢` (S′ Z) · ⊢↑ (⊢` (S′ Z) · ⊢↑ (⊢` Z) refl) refl) refl)) · ⊢ƛ (⊢suc (⊢↑ (⊢` Z) refl)) · ⊢zero _ : synthesize ∅ 2+2ᶜ ≡ yes ⟨ `ℕ , ⊢2+2ᶜ ⟩ _ = refl
Testing the error cases
Unbound variable:_ : synthesize ∅ ((ƛ "x" ⇒ ` "y" ↑) ↓ (`ℕ ⇒ `ℕ)) ≡ no _ _ = reflArgument in application is ill typed:
_ : synthesize ∅ (plus · sucᶜ) ≡ no _ _ = reflFunction in application is ill typed:
_ : synthesize ∅ (plus · sucᶜ · two) ≡ no _ _ = reflFunction in application has type natural:
_ : synthesize ∅ ((two ↓ `ℕ) · two) ≡ no _ _ = reflAbstraction inherits type natural:
_ : synthesize ∅ (twoᶜ ↓ `ℕ) ≡ no _ _ = reflZero inherits a function type:
_ : synthesize ∅ (`zero ↓ `ℕ ⇒ `ℕ) ≡ no _ _ = reflSuccessor inherits a function type:
_ : synthesize ∅ (two ↓ `ℕ ⇒ `ℕ) ≡ no _ _ = reflSuccessor of an ill-typed term:
_ : synthesize ∅ (`suc twoᶜ ↓ `ℕ) ≡ no _ _ = reflCase of a term with a function type:
_ : synthesize ∅ ((`case (twoᶜ ↓ Ch) [zero⇒ `zero |suc "x" ⇒ ` "x" ↑ ] ↓ `ℕ) ) ≡ no _ _ = reflCase of an ill-typed term:
_ : synthesize ∅ ((`case (twoᶜ ↓ `ℕ) [zero⇒ `zero |suc "x" ⇒ ` "x" ↑ ] ↓ `ℕ) ) ≡ no _ _ = reflInherited and synthesised types disagree in a switch:
_ : synthesize ∅ (((ƛ "x" ⇒ ` "x" ↑) ↓ `ℕ ⇒ (`ℕ ⇒ `ℕ))) ≡ no _ _ = refl
Erasure
Erase a type:∥_∥Tp : Type → DB.Type ∥ `ℕ ∥Tp = DB.`ℕ ∥ A ⇒ B ∥Tp = ∥ A ∥Tp DB.⇒ ∥ B ∥TpErase a context:
∥_∥Cx : Context → DB.Context ∥ ∅ ∥Cx = DB.∅ ∥ Γ , x ⦂ A ∥Cx = ∥ Γ ∥Cx DB., ∥ A ∥TpErase a lookup judgment:
∥_∥∋ : ∀ {Γ x A} → Γ ∋ x ⦂ A → ∥ Γ ∥Cx DB.∋ ∥ A ∥Tp ∥ Z ∥∋ = DB.Z ∥ S x≢ ∋x ∥∋ = DB.S ∥ ∋x ∥∋Erase a typing judgment.
∥_∥⁺ : ∀ {Γ M A} → Γ ⊢ M ↑ A → ∥ Γ ∥Cx DB.⊢ ∥ A ∥Tp ∥_∥⁻ : ∀ {Γ M A} → Γ ⊢ M ↓ A → ∥ Γ ∥Cx DB.⊢ ∥ A ∥Tp ∥ ⊢` ⊢x ∥⁺ = DB.` ∥ ⊢x ∥∋ ∥ ⊢L · ⊢M ∥⁺ = ∥ ⊢L ∥⁺ DB.· ∥ ⊢M ∥⁻ ∥ ⊢↓ ⊢M ∥⁺ = ∥ ⊢M ∥⁻ ∥ ⊢ƛ ⊢N ∥⁻ = DB.ƛ ∥ ⊢N ∥⁻ ∥ ⊢zero ∥⁻ = DB.`zero ∥ ⊢suc ⊢M ∥⁻ = DB.`suc ∥ ⊢M ∥⁻ ∥ ⊢case ⊢L ⊢M ⊢N ∥⁻ = DB.case ∥ ⊢L ∥⁺ ∥ ⊢M ∥⁻ ∥ ⊢N ∥⁻ ∥ ⊢μ ⊢M ∥⁻ = DB.μ ∥ ⊢M ∥⁻ ∥ ⊢↑ ⊢M refl ∥⁻ = ∥ ⊢M ∥⁺Erasure of the type derivations in this chapter yield the corresponding intrinsically-typed terms from the earlier chapter:
_ : ∥ ⊢2+2 ∥⁺ ≡ DB.2+2 _ = refl _ : ∥ ⊢2+2ᶜ ∥⁺ ≡ DB.2+2ᶜ _ = refl
Exercise inference-multiplication
(recommended)
Apply inference to your decorated definition of multiplication from exercise bidirectional-mul
, and show that erasure of the inferred typing yields your definition of multiplication from Chapter DeBruijn.
-- Your code goes here
Exercise inference-products
(recommended)
Using your rules from exercise bidirectional-products
, extend bidirectional inference to include products. Also extend erasure. Please delimit any code you add as follows:
-- begin
-- end
Exercise inference-rest
(stretch)
Using your rules from exercise bidirectional-rest
, extend bidirectional inference to include the rest of the constructs from Chapter More. Also extend erasure. Please delimit any code you add as follows:
-- begin
-- end
Untyped
module Untyped where
Imports
import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat using (ℕ; zero; suc; _+_; _∸_) open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩) open import Data.Unit using (⊤; tt) open import Function using (_∘_) open import Function.Equivalence using (_⇔_; equivalence) open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary.Decidable using (map) open import Relation.Nullary.Negation using (contraposition) open import Relation.Nullary.Product using (_×-dec_)
open import plfa.part2.Untyped hiding ()
Exercise (Type≃⊤
) (practice)
Show that Type
is isomorphic to ⊤
, the unit type.
-- Your code goes here
Exercise (Context≃ℕ
) (practice)
Show that Context
is isomorphic to ℕ
.
-- Your code goes here
Exercise (variant-1
) (practice)
How would the rules change if we want call-by-value where terms normalise completely? Assume that β
should not permit reduction unless both terms are in normal form.
-- Your code goes here
Exercise (variant-2
) (practice)
How would the rules change if we want call-by-value where terms do not reduce underneath lambda? Assume that β
permits reduction when both terms are values (that is, lambda abstractions). What would 2+2ᶜ
reduce to in this case?
-- Your code goes here
Exercise plus-eval
(practice)
Use the evaluator to confirm that plus · two · two
and four
normalise to the same term.
-- Your code goes here
Exercise multiplication-untyped
(recommended)
Use the encodings above to translate your definition of multiplication from previous chapters with the Scott representation and the encoding of the fixpoint operator. Confirm that two times two is four.
-- Your code goes here
Exercise encode-more
(stretch)
Along the lines above, encode all of the constructs of Chapter More, save for primitive numbers, in the untyped lambda calculus.
-- Your code goes here